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First principle lattice energy calculations for enantiopure and racemic crystals
of a-(trifluoromethyl)lactic acid: Is self-disproportionation of enantiomers
controlled by thermodynamic stability of crystals?

Seiji Tsuzuki a,*, Hideo Orita a, Hisanori Ueki b, Vadim A. Soloshonok c,d

a National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
b International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
c Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 70319, United States
d Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of the Ukraine, Murmanska Street, Kyiv-94 02660, Ukraine

A R T I C L E I N F O

Article history:

Received 30 September 2009

Received in revised form 21 December 2009

Accepted 22 December 2009

Available online 11 January 2010

Keywords:

First principle calculations

Lattice energy calculations

Enantiopure and racemic crystals

MP2 calculations

Dispersion energy

A B S T R A C T

The lattice energies for the enantiopure and racemic crystals of a-(trifluoromethyl)lactic acid were

calculated by a combination of the DFT calculations with the periodic boundary condition and the MP2

calculations of the interactions with neighboring molecules. The lattice energies calculated for the two

crystals (�16.56 and �17.35 kcal/mol, respectively) show that the racemic crystals are thermodynami-

cally more stable, although the racemic crystals sublime faster than the enantiopure crystals. The

calculations suggest that the relative thermodynamic stability is not the cause of the faster sublimation

rate of the racemic crystals compared with the enantiopure crystals. Although the crystals have

hydrogen-bonding networks, the dispersion interactions contribute to the lattice energies significantly.

The MP2 calculations for the evaluation of the dispersion interactions with the neighboring molecules

are important for an accurate evaluation of the lattice energies. The relative thermodynamic stability of

the two crystals is not determined solely by the hydrogen bonds. The interactions with other

neighboring molecules also play important roles in determining the relative stability. We demonstrate

that the geometry optimization is essential for an accurate evaluation of the lattice energy by the first

principle calculation. The interaction energies calculated using the structure by X-ray diffraction often

have large errors.

� 2010 Elsevier B.V. All rights reserved.
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1. Introduction

The purification of enantiomers is one of the most important
stages in drug discovery and manufacturing of pharmaceuticals
on the large-scale [1–3]. The current methodological choice of
optical purification procedure is limited to either chromatography
on chiral stationary phase or fractional crystallization. Therefore
the discovery and development of novel optical purification
methods would be of significant scientific and technological
impact. In this regard the recently highlighted Self-Dispropor-
tionation of Enantiomers (SDE), describing spontaneous separa-
tion of racemate from the excess enantiomer [4] suggests that any
physico-chemical process can disproportionate the original
enantiomeric composition of any enantiomerically enriched
mixture. For example, the practical potential of distillation [5],
sublimation [6,7], gravitational field [8] and achiral-phase
chromatography [9] for optical purifications, still remain virtually
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completely unknown and unexplored. In particular, recently the
first example of optical self-purification by sublimation of the
mixture of optically pure and racemic crystals was reported [7].
The racemic crystals of a-(trifluoromethyl)lactic acid (1) sublime
about 1.5 times faster than the optically pure crystals. The almost
complete (>99.9% ee) purification was observed from the
sublimation of the optical purity of 80% ee sample. An
enantiomerically enriched compound purifies itself to enantio-
merically pure form only by being exposed to open atmosphere.
The self-purification by the sublimation can potentially be one of
the efficient enantioselective separation methods.

The thermodynamic stability of the two crystals is important
for understanding the cause of the different sublimation rate
constants [7]. The sublimation rate constants depend on the
activation energies for the sublimation processes. If the
activation energies for the sublimation are proportional to the
lattice energies of the crystals, the lattice energies of the two
crystals can explain the difference of sublimation rates. But the
lattice energies for the two crystals were still unclear. Some
experimental measurements were reported for understanding
the relative stability of the two crystals. The density of the
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Fig. 1. The hydrogen bond networks in the two crystals. The interaction energies

with the hydrogen-bonded neighboring molecules calculated by the MP2 method

(kcal/mol).
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racemic crystals is slightly larger than that of enantiopure
crystals, which suggests that the racemic crystal is thermody-
namically more stable. It is expected that the attractive
intermolecular interactions in the dense crystals are stronger
due to the shorter intermolecular distance. On the other hand
the melting points of the two crystals suggest that the
enantiopure crystal is thermodynamically more stable. The
melting points of enantiopure and racemic compounds are
110 8C and 88 8C, respectively. The higher melting point shows
that enantiopure crystal is more stable, if the energy of the
enantiopure liquid and that of racemic liquid are identical.
Unfortunately, the relative stability of the two liquids is not
known. The crystallographic analyses showed that the hydro-
gen-bonding networks in the two crystals are completely
different (Fig. 1). Molecules are arranged in a zigzag form
allowing each molecule to form four hydrogen bonds to four
other molecules in the enantiopure crystal. On the other hand
heterochiral dimers form with two hydrogen bonds between (R)
and (S) enantiomers in the racemic crystal. Each enantiomer has
two more hydrogen bonds to neighboring dimers. Although the
different hydrogen-bonding networks in the two crystals
suggest that the thermodynamic stability of the two crystals
is different, the relative stability of the two crystals is unclear.
Therefore we evaluate the lattice energies for the two crystals by
theoretical calculations in this work.

The lattice energies for the two crystals were calculated by a
combination of the DFT calculations with the periodic boundary
condition and the MP2 calculations [10] for evaluating the
interactions with neighboring molecules in this work. We used
this method for an accurate evaluation of the hydrogen bond
cooperativity effects [11] and the dispersion interactions with
neighboring molecules. The hydrogen bond cooperativity is the
enhancement of hydrogen bonds by a formation of a hydrogen
bond network. An accurate evaluation of the hydrogen bond
cooperativity effects is essential for evaluating the relative
stability of the two crystals, which have different types of
hydrogen bond networks. The first principle calculation with the
periodic boundary condition is necessary for an accurate
evaluation of the hydrogen bond cooperativity effects. The
cooperativity has its origin in molecular polarization by the
formation of a hydrogen bond network. Commonly used force
fields cannot accurately evaluate the effects of polarization. Pair
wise additive first principle calculations cannot evaluate the
cooperativity. Therefore we used the DFT calculations with the
periodic boundary condition for the evaluation of the lattice
energy [12]. Unfortunately, however, DFT calculations cannot
accurately evaluate the dispersion interactions [13], which
contribute to the lattice energies of molecular crystals signifi-
cantly [14]. The dispersion interactions with neighboring
molecules in the crystals were evaluated by the MP2 method,
since the dispersion energy decreases rapidly with separation
[15]. We will also discuss the details of the interactions with
neighboring molecules in the two crystals for understanding
which interactions play important roles in determining the
stability of the crystals. In addition the effects of geometry
optimizations on the interaction energy calculations will be
discussed.

2. Computational method

DFT calculations were performed with the program package
DMOL3 in Material Studio of Accelrys Inc. In the DMOL3 method
[16], the physical wave functions are expanded in terms of
accurate numerical basis sets. We used the double-numerical
quality basis set with polarization functions (DNP). The size of the
DNP basis set is comparable to Gaussian 6-31G** but DNP is more
accurate [16]. The PW91 functionals were used for the DFT
calculation [17]. The positions of atoms in the crystals were
optimized with the periodic boundary condition. The experimental
lattice parameters were fixed during the optimization. The
energies of the crystals (Ecrystal) were calculated using the refined
geometries of the crystals. The geometry for an isolated molecule
was optimized. The energy for an isolated molecule (Emol) was
calculated using the optimized geometry. The lattice energy per
1 mol molecule (Elattice(DFT)) was calculated from the Ecrystal and
Emol as Eq. (1)

ElatticeðDFTÞ ¼
1

n
Ecrystal � Emol; (1)

where n is the number of molecules in an unit cell (n = 4 for the
crystal of pure enantiomers and n = 2 for the racemic crystal). The
lattice energy for the crystal of pure enantiomers relative to that
for the racemic crystal (DElattice(DFT)) was calculated from the
energies of the two crystals obtained by the DFT calculations
(Ecrystal). The Gaussian program [18] was used for the MP2
calculations [19]. The MP2 calculations were used for the
evaluation of the intermolecular interactions with neighboring
molecules. The aug(df, pd)-6-311G** basis set [20] was used for
the MP2 calculations. This basis set is the 6-311G** basis set
augmented with diffuse d and f functions on heavy atoms and
diffuse p and d functions on hydrogen atoms. The basis set
superposition error (BSSE) [21] was corrected by the counterpoise
method [22]. The lattice energies of the two crystals were also
evaluated using the interaction energies with neighboring
molecules calculated at the MP2 level. The dispersion interactions
between neighboring molecules in organic crystals are significant.
The dispersion interactions decrease rapidly with distance, since
the dispersion energy is approximately proportional to the
inverse sixth power of the distance [15]. Therefore the interac-
tions with neighboring molecules [Eshort(MP2)], where the shortest
atom–atom distance is less than 6.0 Å, were evaluated by the MP2
calculations (Fig. 2). The lattice energy (Elattice(MP2+DFT)) was
calculated as the sum of the Elattice(DFT) and the MP2 correction
term (Eshort(MP2�cor)) for the interaction energies with neighboring
molecules as Eq. (2)

ElatticeðMP2þDFTÞ ¼ ElatticeðDFTÞ þ EshortðMP2�corÞ: (2)

The Eshort(MP2�cor) was obtained by subtracting the interaction
energies with the neighboring molecules calculated by the DFT



Fig. 2. The structures for enantiopure and racemic crystals of a-(trifluoromethyl)lactic acid. The central molecule (1) and neighboring molecules are shown. The shortest

atom–atom distance between the central molecule and neighboring molecule is less than 6 Å.

Table 1
Lattice energies calculated for optically pure and racemic crystals by changing the

range of neighboring molecules.a

Methodb Range of

neighborsc

Elattice DElattice
d

Pure Racemic

Elattice(DFT) �12.99 �12.87 �0.12

Elattice(MP2+DFT) 3.0 �16.35 �16.50 0.15

Elattice(MP2+DFT) 3.5 �16.63 �16.70 0.07

Elattice(MP2+DFT) 4.0 �16.58 �16.66 0.08

Elattice(MP2+DFT) 5.0 �16.64 �17.06 0.42

Elattice(MP2+DFT) 6.0 �16.56 �17.35 0.78

a Energy in kcal/mol. See text.
b Elattice(DFT) was obtained by DFT calculations with the periodic boundary

condition. Elattice(MP2+DFT) was the sum of Elattice(DFT) and MP2 correction for the

interaction energies with neighboring molecules. See text.
c The distance (Å) between the nearest atoms is less than this value. See text.
d Elattice for pure crystal relative to that for racemic crystal (=Elattice(pure)

�Elattice(racemic)). See text.
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method (Eshort(DFT)) from the interaction energies with the
neighboring molecules calculated by the MP2 method (Eshort(MP2))
as Eq. (3)

EshortðMP2�corÞ ¼ EshortðMP2Þ � EshortðDFTÞ: (3)

The interaction energies with the neighboring molecules (Eshort)
was calculated as the sum of the pair interaction energies of a
molecule with the neighboring molecules (Ei) as Eq. (4)

Eshort ¼
1

2
SEi: (4)

The neighboring molecules considered in this work are shown
in Fig. 2.

3. Results and discussion

3.1. Lattice energy calculations by DFT method

The energies for the enantiopure and racemic crystals (Ecrystal)
were calculated by the DFT method with the periodic boundary
condition. The Ecrystal for the two crystals were �2723.18893 and
�1361.59408 AU, respectively. The energy for an isolated molecule
was�680.77652 AU. The Elattice(DFT) calculated for the two crystals
are �12.99 and �12.87 kcal/mol, respectively. The lattice energies
for the two crystals are very close, although the calculations show
that the crystal of pure enantiomers is slightly more stable
(0.12 kcal/mol).

3.2. Lattice energy calculations with MP2 correction for interactions

with neighboring molecules

The lattice energies (Elattice(MP2+DFT)) calculated for the enan-
tiopure and racemic crystals with the MP2 correction (Eq. (2))
show that the racemic crystal is more stable, which agrees with the
expectation form the comparison of the densities for the two
crystals. The Elattice(MP2+DFT) calculated for the two crystals were
�16.56 and �17.35 kcal/mol, respectively. The Elattice(MP2+DFT) for
the enantiopure crystal relative to the racemic crystal (DElatti-

ce(MP2+DFT)) is 0.78 kcal/mol. Although the two crystals have
significantly different hydrogen bond networks [7], the lattice
energy difference of the two crystals is not very large. The
Elattice(MP2+DFT) calculated for the two crystals are substantially
larger (more negative) than the Elattice(DFT). The DFT calculations
(Elattice(DFT)) fail to reproduce the larger thermodynamic stability of
the racemic crystal derived from the Elattice(MP2+DFT). These results
show that the evaluation of the dispersion interactions with
neighboring molecules by the MP2 method is essential for accurate
lattice energy calculations.

Although the Elattice(MP2+DFT) values for the two crystals were
also calculated by changing the range of neighboring molecules,
the changes do not affect the preference of the two crystals. The
shortest atom–atom distance for the neighboring molecules was
changed for 3.0, 3.5, 4.0 and 5.0 Å, respectively [23]. The
Elattice(MP2+DFT) values calculated for the two crystals summarized
in Table 1 show that the racemic crystal is always more stable.

3.3. Interactions with neighboring molecules

The pair interaction energies with the neighboring molecules in
the two crystals (Figs. 1 and 2) calculated by the DFT, HF and MP2
methods are summarized in Table 2. The interactions with
hydrogen-bonded neighboring molecules (1–2, 1–3, 1–4 and 1–5
pairs in the enantiopure crystal and 1–2, 1–3 and 1–4 pairs in the
racemic crystal) are stronger than the interactions with other
neighboring molecules. The interactions in the 1–4 and 1–5 pairs in
the enantiopure crystal calculated by the MP2 method (�4.87 kcal/
mol) are significantly weaker than the interactions in the 1–2 and
1–3 pairs (�8.37 kcal/mol), although each pair has a single



Table 2
Pair interaction energies in the two crystals calculated by DFT, HF and MP2

methods.a

EDFT
b EHF

c EMP2
d Ecorr

e

Enantiopure

1–2 �8.39 �4.40 �8.37 �3.97

1–3 �8.39 �4.40 �8.37 �3.97

1–4 �4.46 �2.84 �4.87 �2.02

1–5 �4.47 �2.85 �4.87 �2.02

1–6 �1.05 0.84 �2.99 �3.83

1–7 �0.99 0.19 �1.61 �1.80

1–8 �0.99 0.19 �1.61 �1.80

1–9 �0.71 0.61 �1.32 �1.94

1–10 �0.71 0.61 �1.32 �1.94

1–11 �0.07 1.20 �0.85 �2.05

1–12 �0.07 1.20 �0.85 �2.05

1–13 0.10 1.15 �0.47 �1.62

1–14 �0.89 �0.57 �0.83 �0.26

1–15 �0.89 �0.57 �0.83 �0.26

1–16 �0.11 �0.02 �0.12 �0.10

1–17 �0.06 �0.02 �0.12 �0.10

1–18 �0.04 0.11 �0.10 �0.21

1–19 �0.08 0.01 �0.03 �0.04

1–20 �0.08 0.01 �0.03 �0.04

1–21 �0.01 0.08 0.01 �0.07

1–22 �0.02 0.08 0.01 �0.07

Sum �32.40 �9.41 �39.55 �30.14

Racemic

1–2 �8.15 �4.12 �8.21 �4.10

1–3 �8.14 �4.11 �8.21 �4.10

1–4 �6.58 �3.59 �7.43 �3.84

1–5 �4.38 �2.36 �5.98 �3.62

1–6 �1.13 0.05 �1.91 �1.96

1–7 �1.10 0.01 �1.76 �1.77

1–8 �0.57 0.96 �1.28 �2.24

1–9 �0.57 0.96 �1.27 �2.24

1–10 �0.23 0.98 �0.88 �1.87

1–11 �0.23 0.99 �0.88 �1.87

1–12 �0.13 0.88 �0.63 �1.52

1–13 0.12 1.04 �0.29 �1.33

1–14 �2.26 �2.00 �2.16 �0.16

1–15 0.00 �0.02 �0.23 �0.20

1–16 �0.05 �0.05 �0.22 �0.17

1–17 �0.11 �0.11 �0.22 �0.11

1–18 0.20 0.19 0.02 �0.16

1–19 0.27 0.23 0.14 �0.08

1–20 �0.19 �0.27 �0.33 �0.06

1–21 0.06 �0.08 �0.10 �0.02

1–22 0.19 0.16 0.06 �0.10

1–23 0.20 0.16 0.06 �0.10

Sum �32.76 �10.10 �41.71 �31.61

a Energy in kcal/mol. Pair interaction energies were calculated using the

optimized geometries by the DFT method. See Fig. 2 and text.
b Interaction energy calculated by the DFT method.
c Interaction energy calculated by the HF method.
d Interaction energy calculated by the MP2 method.
e Electron correlation contribution in interaction energy calculated by the MP2

method (=EMP2�EHF). Ecorr is mainly dispersion energy. See text.
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hydrogen bond. The interaction in the 1–4 pair in the racemic
crystal (�7.43 kcal/mol) is weaker than the interactions in the 1–2
and 1–3 pairs (�8.21 kcal/mol), although the 1–4 pair has two
hydrogen bonds. The H� � �O and O� � �O distances in the 1–4 and 1–5
pairs in the enantiopure crystal (1.831 Å and 2.722 Å, respectively)
are substantially shorter than the H� � �O and O� � �O distances in the
1–2 and 1–3 pairs (1.627 Å and 2.630 Å, respectively). The O–H� � �O
angles in the 1–2 and 1–3 pairs (168.08) are close to 1808, while the
O–H� � �O angles in the 1–4 and 1–5 pairs are 148.28. The distances
and angles show that the hydrogen bonds in the 1–4 and 1–5 pairs
are substantially distorted. Probably the distortion is the cause of
the weak hydrogen-bonding energy in the 1–4 and 1–5 pairs in the
enantiopure crystal. Similar distortion was found in the hydrogen
bonds in the 1–4 pair in the racemic crystal. The H� � �O and O� � �O
distances and O–H� � �O angles in the 1–4 pair in the racemic crystal
are 1.788 Å, 2.734 Å and 158.88. The H� � �O and O� � �O distances and
O–H� � �O angles in the 1–2 and 1–3 pairs in the racemic crystal
(1.640 Å, 2.646 Å and 169.68). These values are close to those in the
1–2 and 1–3 pairs in the enantiopure crystal. The interactions in
the 1–2 and 1–3 pairs in the two crystals are substantially stronger
than the interaction in the water dimer (about �5 kcal/mol) [13c],
which is a typical hydrogen bond. The Ecorr (=EMP2 � EHF) for the 1–
2 and 1–3 pairs are significant (�3.97 to�4.10 kcal/mol). The large
Ecorr values show that the dispersion interactions enhance the
attraction in these pairs substantially. The Ecorr is mainly
dispersion energy, since the dispersion interaction has its origin
in electron correlation and therefore the HF method cannot
evaluate the dispersion energy.

Substantial attraction exists in the 1–5 and 1–14 pairs in the
racemic crystal (�5.98 and �2.16 kcal/mol), although these pairs
do not have hydrogen bonds. The negative EHF values for these
pairs (�2.36 and �2.00 kcal/mol) indicate that the electrostatic
interaction, which is one of the long-range interactions, is an
important source of the attraction in these pairs. Substantial
attraction also exists in the 1–6, 1–7, 1–8, 1–9 and 1–10 pairs in the
pure crystal and in the 1–6, 1–7, 1–8 and 1–9 pairs in the racemic
crystal (�1.27 to�2.99 kcal/mol). The EHF values for these pairs are
positive, which shows that the dispersion interaction is the major
source of the attraction.

The sum of EHF with the neighboring molecules (within 6 Å) and
that of Ecorr were calculated for the two crystals as shown in Table
2. The EHF is mainly the sum of the electrostatic and repulsion
interactions. The Ecorr values for the enantiopure and racemic
crystals (�30.14 and�31.61 kcal/mol) are significantly larger than
the EHF for the two crystals (�9.41 and�10.10 kcal/mol). The large
Ecorr values show that the contributions of the dispersion
interactions to the lattice energies of the two crystals are
significant, although one may consider that the hydrogen-bonding
energy (electrostatic energy) is mainly responsible for the lattice
energies of the two crystals. The large contributions of the
dispersion interactions show the importance of an accurate
evaluation of the dispersion energy for the analysis of the lattice
energies of the crystals.

Each molecule has four hydrogen bonds in the two crystals
(Fig. 1). The pair interaction energies calculated for the four
hydrogen-bonded pairs in the enantiopure crystal are �8.37,
�8.37, �4.87 and �4.87 kcal/mol, respectively. The sum of the
interaction energies with the four hydrogen-bonded molecules
is �26.48 kcal/mol. Each molecule has two hydrogen bonds with
an enantiomer and additional two hydrogen bonds with two
other molecules in the racemic crystal. The interaction energy
with the hydrogen-bonded enantiomer is �7.43 kcal/mol. The
interaction energies with other two hydrogen-bonded molecules
are �8.21 and �8.21 kcal/mol, respectively. The sum of the
interaction energies with the three hydrogen-bonded molecules
is �23.85 kcal/mol. The sum of the interactions with the
hydrogen-bonded molecules in the enantiopure crystal is
substantially (2.63 kcal/mol) larger than that in the racemic
crystal. On the other hand the lattice energies (Elattice(MP2+DFT))
calculated for the two crystals show that the racemic crystal is
more stable (0.78 kcal/mol). These results show that the relative
stability of the two crystals are not determined solely by the
hydrogen bonds and interactions with other neighboring
molecules also play important roles in determining the relative
stability of the crystals.

3.4. Effects of geometry optimization

Starting from XRD structures, geometry optimizations do not
significantly change the positions of heavy atoms, while the
positions of hydrogen atoms substantially change [10]. The



Fig. 3. The interaction energies calculated for the 1–2 pair in the enantiopure crystal

by the MP2 method using the XRD structure and the optimized structure by the DFT

method. The O� � �H distances and O� � �H–O angles in the two structures are shown.
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geometry of the 1–2 pair in the enantiopure crystal is shown in
Fig. 3. The hydrogen atom in the hydrogen bond moved
substantially by the geometry optimization. The O� � �H distance
in the optimized structure (1.627 Å) is substantially shorter than
that in the structure by the X-ray diffraction (XRD) measure-
ment (1.901 Å). The O� � �H–O angle in the optimized structure
(168.08) is closer to 1808 compared with that by XRD (160.58).
The intermolecular interaction energy calculated for this pair
using the optimized geometry (�8.37 kcal/mol) is more than
3 kcal/mol larger than that using the structure by XRD
(�5.03 kcal/mol). The large difference clearly shows the impor-
tance of the geometry optimization. Apparently the position of
the hydrogen atom in the optimized geometry is more
appropriate for the stabilization by the hydrogen bond than
that in the structure by XRD. It is well known that accurate
determination of the positions of hydrogen nuclei by XRD is
extremely difficult, and consequently, the positions of the
hydrogen atoms in an XRD structure often have large error,
which is probably the cause of the deviations when using the
XRD structures for calculations. Our calculations show that the
geometry of crystal must be optimized with great care, if one
wants to evaluate the lattice energy of the crystal accurately.

3.5. Causes of different rate constants of sublimation

The lattice energies calculated for the two crystals suggest that
the racemic crystal is more stable than the enantiopure crystal, while
the experimental measurements of sublimation under followed
zero-order kinetics, gave 1.50� 0.02 ratio of zero-order rate constants
k(racemic)/k(enantiopure) [7]. These results suggest that the sublima-
tion rates are not controlled by the thermodynamic stability of the
crystals, which means that the activation energies for the sublimation
of the two crystals are not proportional to the lattice energies. Although
details of the sublimation processes of the two crystals are still unclear,
the smaller sublimation rate constant for the thermodynamically less
stable enantiopure crystals suggests that the sublimation mechanisms
of the two crystals are different. It is quite probable that the a-
(trifluoromethyl)lactic acid sublimates as dimers, since carboxylic acid
molecules often form dimers in the gas phase. The structure of
enantiopure crystal suggests that hydrogen bond recombination is
necessary in the sublimation process provided that the molecules
sublimate as dimers. On the other hand the recombination may not be
necessary for the sublimation of racemic crystals. This difference is one
of the possible reasons of the different sublimation rates.

4. Conclusion

The first principle lattice energy calculations of the enantio-
pure and racemic crystals of a-(trifluoromethyl)lactic acid show
that the racemic crystal is thermodynamically more stable,
although the racemic crystals sublime faster than the enantio-
pure crystals. The calculations suggest that the sublimation
rates are not controlled by the thermodynamic stability of the
crystals. Although the crystals have hydrogen-bonding net-
works, the interaction energy calculations show that the
contributions of the dispersion interactions to the lattice
energies are significant. The accurate evaluation of the disper-
sion interactions with neighboring molecules by the MP2
method is important for lattice energy calculations. Although
the two crystals have significantly different hydrogen-bonding
networks, which suggest that the hydrogen-bonding energies in
the two crystals are different, the lattice energy difference of the
two crystals is small. This shows that the relative stability of the
two crystals is not determined solely by the hydrogen bonds and
the interactions with other neighboring molecules also play
important roles in determining the relative stability. The
geometry optimization is essential for an accurate evaluation
of the lattice energy by the first principle calculation. The
positions of hydrogen atoms in the structure by the X-ray
diffraction often have large errors, which largely change the
interaction energies calculated for hydrogen-bonded pairs.
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